Profiles of drowsy drivers in the general population

US-Eval Comorbidity Survey [US-ECS]

Maurice M. Ohayon, MD, DSc, PhD

John Arrillaga PI & Professor of Psychiatry & Behavioral Sciences
Chief of the Division of Public Mental Health & Population Sciences
Director, Stanford Sleep Epidemiology Research Centre (SSERC)
Stanford University, School of Medicine

Introduction

- From where are coming numbers on drowsiness and accidents?
 - Police reports
 - Transportation & safety, insurance reports
 - Clinical studies for specific diseases
 - And, rarely, from population studies
- Regardless the way to collect the data, the correlations with the death toll are biased
- Population surveys representative of the general population are one of the best ways to assess Sleepiness At Wheel (SAW) and its impact on traffic accidents

Present study

- Is based on a large representative sample of the American general population
- This study has 2 main objectives:
 - To determine how many individuals experience sleepiness while at the wheel of a motor vehicle
 - To identify what are the characteristics of these individuals in terms of:
 - Socio-demographic characteristics
 - Sleep disorders
 - Medical conditions & psychiatric disorders
 - Treatments

Sample

- 19,136 individuals (83.2% participation rate)
- Age range: 18-102 years
- Location: 15 states

(Arizona, California, Colorado, Florida, Idaho, Missouri, New York, North Carolina, North Dakota, Oregon, Pennsylvania, South Dakota, Texas, Washington, and Wyoming)

13,376 individuals reported driving a motor vehicle (83.8% of the sample)

Information collected

- Mental disorder diagnoses according to DSM-IV-TR*
- Sleep disorder diagnoses according to DSM-IV-TR and ICSD-2*
- Organic diseases according to ICD-10
- Psychotropic consumption according to the roster of pharmacological compounds

^{*} Positive and differential diagnoses

Sleepiness At the Wheel (SAW) by age and gender

Traffic accidents by age and gender

Traffic accidents with or without SAW in the past year

[%] of car accidents SAW > without SAW p<0.0001 both in men and women

SAW by the time of the accident

SAW by nighttime sleep duration

AOR: Adjusted odd ratio for age and gender Among people sleeping less than 5 hours ...

SAW by fatigue severity

AOR: Adjusted odd ratio for age and gender Among people reporting no fatigue....

Prevalence of SAW and accidents by Automatic behaviors

AOR: Adjusted odd ratio for age and gender

Among individuals with automatic behaviors ≥ 1tweek 16.6% were sleepy at the wheel and 9.1% had a car accident © MM Ohayon 2014

Prevalence of sleepiness at the wheel by sleep disorders

AOR: Adjusted odd ratio for age and gender

Among people with Insomnia disorder, 9 % are sleepy at the wheel in comparison, among people without Insomnia disorder, 6.2% are sleepy © MM Ohayon 2014

Prevalence of sleepiness at the wheel by mental disorders

AOR: Adjusted odd ratio for age and gender

Among people with MDD, 13.3 % are sleepy at the wheel in comparison, among people without MDD, 7.5% are sleepy

© MM Ohayon 2014

Prevalence of sleepiness at the wheel by alcohol consumption

AOR: Adjusted odd ratio for age and gender

Prevalence of sleepiness at the wheel by medication

AOR: Adjusted odd ratio for age and gender

Among people using antiarrythmic, 15.8% are sleepy at the wheel in comparison, among people without antiarrythmic, 7.1% are sleepy © MM Ohayon 2014

Best predictors of sleepiness at wheel for men < 35 years

Best predictors of sleepiness at wheel for men ≥**35 years**

Multiple sleepiness episodes same day

Automatic behaviors at the wheel [≥ 1t/mo]

Sleep duration < 6 hrs/ night

Insomnia symptoms ≥ 3 months

46% of the variance

Best predictors of sleepiness at wheel for women < 35 years

Multiple sleepiness episodes same day

Daily alcohol intake ≥ 6 drinks

Automatic behaviors at the wheel [≥ 1t/mo]

OTC sleep aid

46% of the variance

Best predictors of sleepiness at wheel for women ≥ **35 years**

Multiple sleepiness episodes same day

Automatic behaviors at the wheel $[\geq 1t/mo]$

OSAS

Sleep drunkenness

Major Depressive Disorder

45% of the variance

Best predictors of traffic accidents for men < 35 years

OSAS

Daily alcohol intake ≥ 6 drinks

Major Depressive Disorder

Insomnia symptoms ≥ 3 months

41.8% of the variance

Best predictors of traffic accidents for men ≥35 **years**

Automatic behaviors at the wheel [≥ 1t/mo]

Daily alcohol intake ≥ 6 drinks

Sleep drunkenness

Asthma & Allergies

32.2% of the variance

Best predictors of traffic accidents for women <35 years

Best predictors of traffic accidents for women ≥35 years

Sleepiness at the wheel

Automatic behaviors at the wheel [≥ 1t/mo]

26.6% of the variance

Conclusions

- Sleepiness while driving is relatively frequent affecting 9% of men and 4.3% of women representing 13.4M of American drivers*
- Sleepy individuals at the wheel have nearly 2 times more chances to be involved in a traffic accident in the past year
- Factors associated with sleepiness at the wheel are numerous: sleep deprivation, fatigue, insomnia, OSAS, depression, anxiety disorders, alcohol and medications (including OTC)